

Medie and Propre Limpio

Gouvernement Catalan Ministère de l'Environnement

Nº 55

Exemples d'actions de minimisation de déchets et d'émissions

Réutilisation de l'énergie d'un condenseur de vapeur

Entreprise

Croatian Electric Utility Company - Centrale d'énergie thermique Sisak (Croatie).

Sisak est la centrale d'énergie thermique la plus importante du système d'énergie électrique en Croatie. Elle produit 11,2 % de l'énergie électrique totale générée par Croatian Electric Utility et 31 % de l'énergie installée des centrales d'énergie thermique en Croatie.

L'effectif de l'entreprise est de 228 employées, et la capacité de production, 1 800 000 MWh/an.

Secteur industriel Production d'énergie électrique.

sur

l'environnement

Considérations La centrale thermique Sisak utilise de l'eau provenant de la rivière Sava comme agent de refroidissement dans l'unité de condensation à turbine.

> Une partie de l'eau extraite de la rivière est utilisé dans une unité de conditionnement de l'eau/décarbonisation. La température de l'eau intrant doit être supérieure aux 15 °C.

> Pendant l'hiver (environ 6 mois/an), l'eau de la rivière Sava est trop froide pour être employée directement. Il est donc nécessaire de la chauffer avec de la vapeur produite dans un échangeur thermique.

Antécédents

L'entreprise consommait une quantité considérable d'énergie pour produire la vapeur nécessaire dans l'échangeur thermique qui chauffait l'eau provenant de la rivière Sava.

Résumé de l'action

Lors de la mise en place d'une modification assez simple du système des conductions, on obtient l'eau d'admission à l'unité de conditionnement de l'eau/décarbonisation de l'eau de sortie de l'unité de condensation à turbine.

L'eau est maintenant suffisamment chaude pour être employée directement dans l'unité de conditionnement de l'eau/décarbonisation. Par conséquent, il n'est plus nécessaire de la chauffer de façon préalable au moyen de la vapeur produite par l'échangeur thermique.

Grâce à cette action, des économies significatives dans la production de vapeur ont été réalisées, ce qui a également permis de réduire la consommation énergétique de l'entreprise.

Diagrammes ANCIEN PROCÉDÉ Générateur Turbine Rivière Sava Évaporateur Condenseur Rivière Sava Vapeur 7 bars Unité de conditionnement Chauffe-eau de l'eau/décarbonisation NOUVEAU PROCÉDÉ Turbine Générateur < 15 °C Rivière Sava Évaporateur Condenseur < 15 °C Rivière Sava Unité de conditionnement de l'eau/décarbonisation **Bilans** Bilan des matières Réduction de l'eau de refroidissement (m³/an) 432 000 Réduction de la production de vapeur (t/an) 7 174 Bénéfices économiques Économies (€/an) 73 273,51 414,5 Investissement (€) Amortissement de l'investissement 2 jours Depuis la mise en œuvre de cette modification alternative du procédé, l'entreprise a **Conclusions**

NOTE: Ce cas pratique prétend simplement illustrer un exemple de prévention de la pollution et ne doit pas être considéré comme une recommandation générale.

Cas pratique présenté par : CROATIAN CLEANER PRODUCTION CENTRE

Savska cesta 41/IV HR-10000 Zagreb(Croatie) Tél. (+385) 1 6311999

Fax (+385) 1 6176734 Courriel: marijan.host@apo.tel.hr

l'investissement.

http://www.cro-cpc.hr

Centre d'activités régionales pour la production propre

Dr. Roux, 80 08017 Barcelone (Espagne) Tél. (+34) 93 553 87 90 Fax. (+34) 93 553 87 95 Courriel: cleanpro@cprac.org http://www.cprac.org

considérablement réduit sa consommation d'énergie (fioul et gaz). Par conséquent, la centrale d'énergie thermique Sisak a réalisé d'importants bénéfices économiques ce qui a rendu possible le remboursement presque immédiat de