

Training on mercury management and remediation of contaminated sites

Human Health Risk Assessment Mercury contaminated sites

Almadén, Spain. 18-19 November 2015

Definition

A *Human health risk assessment* is the process to estimate the nature and probability of adverse health effects in humans who may be exposed to chemicals in contaminated environmental media, now or in the future (*EPA*)

Main objectives

 ✓ to determine tolerable levels of contaminants in soil and groundwater that are protective of public health and ecosystems: Site Specific Target Level (SSTL)

✓ to provide a consistent methodology for appraising and recording public health risks at contaminated sites

✓ to establish the baseline risks and determine whether site remediation is required (Decision-making)

✓ to enable the comparison of potential health impacts of various remedial technologies.

Tiers of analysis

European soils policies

✓ EU Thematic Strategy for Soil Protection, adopted in 2006
 ✓ Some countries:

National policies for the management of contaminated sites
 Specific legislation regulating investigation and clean-up of contaminated land

 ✓ Proposal for a Directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC (may of 2014)

European soils policies

Overview of general practices for the identification and characterisation of contaminated sites in twenty three European countries (based on data from: Ferguson, 1999; CLARINET, 2002; CLARINET, Contaminated Land Approaches in 16 European Countries, Online on the internet http://www.clarinet.at/policy/, accessed: December 27, 2007)

Country	Most common approach for the classification of contaminated sites and definition of clean-up criteria	Specific contaminated land policy
Austria	Site-specific risk assessment	Yes
Belgium (Flanders)	Site-specific risk assessment (exposure assessment)	Yes
Bulgaria	Norms of maximum admissible contents of hazardous substances in the soil	No
Czech Republic	"ABC" limit values: A – background values; B – Possible possible adverse effects; C – Significant	No
	significant risk to human health and the environment. Risk assessment approach for state B criterion.	
Denmark	Risk-based guideline values	Yes
Estonia	Target values and guidance values (based on risk for human health)	Preliminary
Finland	Risk-based guideline values	No
France	Site-specific risk assessment (tiered approach: preliminary site investigation; simplified risk assessment;	No
	detailed risk assessment)	
Germany	Risk-based soil screening values (trigger values) and action values	Yes
Hungary	Limit values for soil and groundwater: A: background values; B: Threshold threshold values of	Preliminary
	contamination; C: Threshold threshold values of measures; D: target values. (based on Dutch,	te estimation and the
	German, US EPA and Canadian guidelines)	
Italy	Original 'limit value' approach has been included into a 'risk-based' multi-tier approach: Tier $1 -$ screening	Yes
	values or contamination threshold values; Tier 2 - site-specific target levels or risk threshold values	
Latvia	Threshold values (Dutch threshold values used as reference)	No
Lithuania	Standards for contaminated soil and groundwater drafted (in line with Dutch threshold values).	No
	Site-specific simplified risk assessment.	
Norway	Tiered approach: Tier $1 -$ generic target values ("TVs" based on existing Dutch and Danish guidelines);	Part of "Pollution Control Act"
	Tier 2 - site specific risk assessment (when TVs are exceeded); Tier 3 - Detailed detailed investigation	and several specific Guidelines
Poland	Standards for environmental protection are generally based on fixed regulatory limits, but still no generic	No
	values for contaminated land. US EPA methods often used in site-specific risk assessments.	
Portugal	Guideline values — Ontario (Canada) guideline values used as reference	No (under development)
Slovakia	Target values or permissible levels (former Dutch threshold values list was adapted in 1994)	Yes
Slovenia	Limit, warning and critical concentration values of dangerous substances in soil	Yes
Spain	Screening/guideline values and site-specific risk assessment	Yes
Sweden	Site-specific risk assessment (exposure assessment). The Swedish EPA defined guideline values for levels	No
	in polluted soils, for the most sensitive types of land-uses	
Switzerland	Site-specific risk analysis. Intervention values for leachate and gaseous phase.	Yes
Netherlands	Risk-based norms (criteria): target values and intervention values	Yes
United Kingdom	Site-specific risk assessment based on Source-Pathway-Receptor approach and on the definition of	Yes
	"pollutant linkages". ". Soil Guideline Values have been derived using the Contaminated Land Exposure	
	Assessment (CLEA) model for three land uses.	

Spanish approach

✓ Royal Decree 9/2005

 ✓ Risk-based Generic Values of Reference (GVRs) for 60 priority pollutants
 ✓ Site-specific risk assessment → Risk-based Corrective Action

✓ Law 22/2011

Vemgrisa

RISK MANAGEMENT AND DECISION-MAKING

Step 0: Planning and Scoping Process and Data Evaluation

✓ Planning and research

✓ Developing a Conceptual Site Model (CSM): is a representation of the physical, chemical and biological processes that control the transport, migration and actual/potential impacts of contamination (in soil, air, ground water, surface water and/or sediments) to human and/or ecological receptors.

✓ Factors to be considered:

- \checkmark the contaminants: concentration, distribution and media affected, on and off the site
- ✓ physical characteristics of the environment
- \checkmark characteristics of the exposed population
- ✓ means by which exposure could occur

CSM- Source

SCM- Transport

Step 1: Hazard Identification

✓ Process of determining whether exposure to a stressor can cause an increase in the incidence of specific adverse health effects (e.g., cancer, birth defects). It is also whether the adverse health effect is likely to occur in humans.

✓ Types of health effects:

✓ Acute effects
 ✓ Chronic threshold effects (all kinds of chronic toxicity other than cancer)
 ✓ Chronic cancer effects

✓ Source of data:

✓ Statistically controlled clinical studies on humans and animals (more common)

✓ Epidemiological studies

Step 2: Exposure Assessment

✓ Estimation of the magnitude, frequency, extent and duration of exposures to contaminants

✓ The key elements of exposure assessment are:

- ✓ Analysis of contaminant releases (concentration)
- ✓ Identification of potential exposure pathways
- ✓ Estimation of exposure for each pathway
- ✓ Estimation of contaminant intake for each pathway
- ✓ Evaluate uncertainties

Exposure Pathway Flowchart

Step 3: Toxicity Assessment

✓ Defines toxicity and dose-response relationship for each contaminant of concern

✓ Literature-based research exercise.

✓ Sources of toxicity information (among others):
 ✓ World Health Organization sources
 ✓ IRIS (Integrated Risk Information Systems), USEPA
 ✓ Risk Assessment Information System (RAIS)
 ✓ International Agency for Research on Cancer (IARC) documents

Step 4 : Risk Characterization

✓ Information from the data collection, exposure and toxicity assessments is summarised and integrated.

✓ Three steps:
 ✓ Risk estimation
 ✓ Risk evaluation
 ✓ Sensitivity and uncertainty analysis

Step 4 : Risk Characterization

✓ Non-carcinogenic substances:

Characterized by a threshold below which the body is able to cope with or recover from the exposure

HI (Hazard Index)=∑HQ (Hazard Quotient) = Intake non-carcinogenic/ Reference Dose Factor HI >1 →UNSAFE HI <1 →SAFE

✓ Carcinogenic substances:

There is no threshold and the effect of episodic doses accumulate. There is no zero risk if there is exposure at all

IELCR = Intake carcinogenic x Slope Factor (SFo) of the Dose response curve

IELCR = Individual Excess Lifetime Cancer Risk

Acceptable threshold is 10⁻⁵ (in Spain)

Mercury (Hg)

✓ Mercury exists in several forms:
 ✓ methylmercury and other organic compounds,
 ✓ elemental (metallic) mercury and
 ✓ inorganic mercury compounds.

Source: Tetra Tech, Inc. 2010

Mercury (Hg) toxicity

✓ For exposed living organisms, the form of mercury affects:

- how available it is to cause effects within the body;
- ✓ how it moves around inside the body;
- ✓ how toxic it is;
- ✓ how it accumulates, is transformed and leaves the body;
- ✓ how it biomagnifies (builds up) along the food chain.

✓ There are important qualitative and quantitative differences in the toxicity of different species of Mercury (e.g. methylmercury and Hg²⁺ ions).

✓ e.g. Cancer Risk (EPA):

✓ Elemental mercury: Group D, not classifiable as to human carcinogenicity
 ✓ Inorganic mercury: mercuric chloride, as a Group C, possible human carcinogen
 ✓ Methylmercury: Group C, possible human carcinogen

Mercury (Hg) main exposure assessment

Software

✓ UMS System (Germany) ✓ Vlier-Humaan (Belgium) ✓ JAGG (Denmark) ✓ Arrikugest (Spain) ✓ ConSim (Great Britain) ✓ P20—RTW (Great Britain) ✓ CLEA (Great Britain) ✓ Risc-Human (The Netherlands) ✓ ROME (Italy) ✓ RBCA Tool Kit for Chemical Releases (USA): http://www.gsinet.com/en/software/rbca-tool-kit-for-chemical-releases-version-2-6e.html ✓ RISC (USA): <u>http://www.groundwatersoftware.com/risc.htm</u>

Site Name: ESTACIÓN DE SERVICIO KM 11

Location: AEROPUERTO DE BARCELONA

_ 🗆 ×

?

Date: 10-Oct-11

Ψİ

Cumulative 2

1.0E-5

1,0E+0

Adjustment Factor

Print Sheet Help

RBCA Tool Kit for Chemical Releases

💐 RBCA Tool Kit for Chemical Releases

Exposure Factors and Target Risk Limits

. Exposure Parameters 🥐	Resid	lential Rece _l	ptors	Commerica	Receptors	User	Compl	. By: EMGRISA	
_	Child	Adolescent	Adult	Adult	Construc.	Defined	Job ID:	S439	Date
veraging time, carcinogens (yr)			70			70	2.	Age Adjustment for Carc	inogens
veraging time, non-carcinogens (yr)	6	12	1	25	1	25	(res	sidential receptor only)	Adjustment Fac
ody weight (kg)	15	35	70	70	70	70		Seasonal skin surface area, soil conta	act 367,686 (on
xposure duration (yr)	6	12	1	25	1	25		Water ingestion	0,25714 (m
veraging Time for Vapor Flux (yr)		30		30	30	30		Soil ingestion	124,286 (m
xposure frequency (d/yr)		350		230	180	28,75		Swimming water ingestion	2,418 (ப
ermal exposure freq. (d/yr)		350		230	180	28,75		Skin surface area, swimming	106200 (cn
easonal-avg skin surface area (cm²/d)	2023	2023	3160	3160	3160	3160		Fish consumption	0,0125 (kg
oil dermal adherence factor (mg/cm²)	0,5	0,5	0,5	0,5	0,5	0,5		Below-ground vegetable ingestion	0,09 (kg
/ater ingestion rate (L/d)	1	1	2	1	1	1		Above-ground vegetable ingestion	0,01 (kg
oil ingestion rate (mg/d)	200	200	100	50	100	50	3.1	lon-Carcinogenic Recep	otor Adult
wimming exposure time (hr/event)	1	8	8				(re:	sidential receptor only)	Houk
wimming event frequency (events/yr)	12	180	180				4.	Target Health Risk Limit	S Individual C
wimming water ingestion rate (L <i>I</i> hr)	0,5	0,001	0,001				Targ	et Cancer Risk (Carcinogens)	1,0E-5
kin surface area, swimming (cm²)	3500	5900	5900				Targ	et Hazard Quotient/Index (non-Carc.)	1,0E+0
sh consumption rate (kg/d)	0,025	0,025	0,025			7 /	5. (Commands and Options	
egetable ingestion rate (kg/d)								Return to Exposu	re Pathways
Above-ground vegetables	0,002	0,002	0,006						Drint Clas
Below-ground vegetables	0,001	0,001	0,002					Use/Set Default	Print She
ontaminated fish fraction (-)		1						Values	Help
							1.1		

S S

> Ś s

S

1. Soil Source Zone Characteristics ? Hydrogeology ? Depth to water-bearing unit 2,054 Capillary zone thickness 0.05 (m) Soil column thickness 2,004 (m) Affected Soil Zone Volumet Depth to top of affected soils 0 (m) Depth to base of affected soils 0 (m) Length of affected soil parallel to assumed GW flow direction 50 (m)	GRISA Soil Column mant USCS Soil Type Calculate tric water content tric air content orosity K density	V/SP: Sand TM Default V/SP: Sand Silty Sand Silty Sand Silty Sand Silty Sand Silty Sand Silty Silt Silt Clavery Silt Silt Clavery Silt Silt
Hydrogeology 2. Surface Depth to water-bearing unit 2,054 (m) Capillary zone thickness 0,05 (m) Soil column thickness 2,004 (m) Volumet Affected Soil Zone Volumet Volumet Depth to top of affected soils 0 (m) Total po Depth to base of affected soils 2,054 (m) Dy bulk Length of affected soil parallel to 50 (m) Vertical assumed GW flow direction Vapor parallel Vapor parallel	e Soil Column nant USCS Soil Type Calculate tric water content tric air content prosity k density	VISP: Sand TM Default VISP: Sand VISP: Sand VISP: Sand VISP: Sand Sity Sand
Depth to water-bearing unit 2,054 (m) Predomin Capillary zone thickness 0,05 (m) Volumet Soil column thickness 2,004 (m) Volumet Affected Soil Zone Volumet Volumet Depth to top of affected soils 0 (m) Total po Depth to base of affected soils 2,054 (m) Dry bulk Length of affected soil parallel to assumed GW flow direction 50 (m) Vertical I	tric water content tric air content	W/SP: Sand ▼ ? TTM Default ♥ ? W/SP: Sand * ? 1: Silty Sand * . 1: Silty Sand * . 2: Gayey Sand . . 3: Silty Silt . . 1: Silty Silt . . 2: Silty Silt . .
Capillary zone thickness 0,05 (m) Soil column thickness 2,004 (m) Affected Soil Zone Volumet Depth to top of affected soils 0 (m) Total po Depth to base of affected soils 2,054 (m) Dry bulk Length of affected soil parallel to assumed GW flow direction 50 (m) Vertical Notes of the source of the s	Calculate AS tric water content SN tric air content ML prosity ML c density MC	STM Default # V(SP: Sand # 1: Silty # 1: Silt #
Soil column thickness 2,004 (m) Volume Affected Soil Zone Volume Depth to top of affected soils 0 (m) Total po Depth to base of affected soils 2,054 (m) Dry bulk Length of affected soil parallel to assumed GW flow direction 50 (m) Vertical	tric water content SN tric air content SC prosity M < density M	I: Silty Sand I: Clayey Sand I: Sandy Silt I: Silt I: Clayey Silt I: Silty Silty Silt I: Silty Silty Silt I: Silty
Affected Soil Zone Volumel Depth to top of affected soils 0 (m) Total po Depth to base of affected soils 2,054 (m) Dry bulk Length of affected soil parallel to assumed GW flow direction 50 (m) Vertical	tricaircontent SC mu prosity Mu «density C	C: Clayey Sand
Depth to top of affected soils 0 (m) Total po Depth to base of affected soils 2,054 (m) Dry bulk Length of affected soil parallel to assumed GW flow direction 50 (m) Vertical	orosity ML <density o<="" th=""><th>: Silt</th></density>	: Silt
Depth to base of affected soils 2,054 (m) Dry bulk Length of affected soil parallel to assumed GW flow direction 50 (m) Vertical Vapor per	density	4: Clavey Silt (a)(1)
Length of affected soil parallel to 50 (m) Vertical assumed GW flow direction Vapor pe		(9/L)
assumed GW flow direction Vapor p	hydraulic conductivity	: Silty Clay n/d)
	ermeability Ch	t: Clay n^2)
Res/Com Construction Capillar	y zone thickness	EA-UK: Loam n)
Affected soil area 2025 (m^2) Net Rainfa	all Infiltration	EA-UK: Clay
Length of affected soil parallel to 50 50 (m) Net infiltrat	ition estimate	73,728 <mark>(mm/yr)</mark>
assumed wind direction or	r Calculate 🔽	↑ or
Average a	nnual precipitation	640 (<i>mm/yr</i>)
Partitionii Partitionii	ng Parameters	
Fraction or	rganic carbon - entire soil column	0,009 (-)
Fraction or	rganic carbon - root zone	0,01 (-)
Soll/water	pH nde and Ontions	6,8 (-)
3. Commai	nds and Options	
Main Sc	reen	Print Sheet
	Use/Set Default	
	nits Values	Help

RBCA SITE ASSESSMENT					Input Parameter Summary				
Sile Name: TALLER ADIF MIRANDA EBRO. Z. SUMINISTRC Sile Location: MIRANDA DE EBRO (BURGOS)						Completed By: EMGRISA Date Completed: 22/04/2010			
Exposure	Parametere		Ret	idential		Commercia	Andustrial	User Defined	
		Child	Adolescent	Adute	Age Adjucted**	Adult	Construct.		
ATC	Averaging time for carcinogens (yr)	70	70	70	NA	70	70	70	
ATn	Averaging time for non-caroinogens (yr)	6	12	30	NA	25	1	25	
BW	Body weight (kg)	15	35	70	NA	70	70	70	
ED	Exposure duration (yr)	6	12	30	76A	25	1	25	
τ	Averaging time for vapor flux (yr)	30	30	30	NA	30	30	30	
EFD.	Exposure frequency (days/yr)	350	350	350	764	230	100	30	
Be	Innestion rate of water (I (day)	1	1	2	NA	1	100	1	
IRs.	Ingestion rate of soil (mo/dav)	200	200	100	NA	so	100	50	
SA	Skin surface area (dermal) (cm*2)	2023	2023	3160	NA	3160	3160	3160	
M	Soil to skin adherence factor	0.5	0.5	0.5	14	0.5	0.5	0.5	
ETswim	Swimming exposure time (hn/event)	1	1	1	NA	NA	NA	NA	
EVswim	Swimming event frequency (events/yr)	90	SO	90	NA	NA	A4A	NA	
Rswim	Water ingestion while swimming (L/hr)	0,5	0,5	0,05	NA	NA	NA	NA	
SAswim	Skin surface area for swimming (cm*2)	3500	8100	23000	NA	NA	NA	NA	
IRfish	Ingestion rate of fish (kg/yr)	0,025	0,025	0,025	NA	NA	NA	NA	
Fittish	Contaminated tish traction (unitiess)	1	1	1	NA	NA	NA	NA	
Rog	Below-ground vegetable Ingestion	0,002	0,002	0,006	NA	NA	NA	NA	
VCbg	Above-ground Vegetable ingestion	0,001	0.01	0,002	NA I	104	764	764	
VGbg	Relaw ground Veg. Ingest. Correction Factor	0.01	0.01	0,01	764	104	A44	764	
*= Adult P	evening used for Non-Cardinanens	0,01	6,01	0,01	7474	150	78/6	75%	
** - NS- A	pe Adjustment not selected for this parameter. Ap	e-adjusted rate is	effective value	corresponding t	o adult exposure fa	ctors.			
Complete	Exposure Palbways and Recentors	On-alte	Off-alte 1	Off-atte 2	i '				
Groundw	ater:								
Ground	water ingestion	None	None	None					
Soll Lea	iching to Groundwater Ingestion	None	None	None					
Apply N	ICL Values	NO	NO	No					
Applicabl	e Surface Water Exposure Routes:								
Swimm	ng	764	NA	None					
FIST CO	Fish Consumption		76H	None					
Aquasc	Life Protection	701	764	None					
Direct Cr	intact: direct combined natiways	None	NA	NA					
Apply C	LEA- UK SGV levels		NO						
Outdoor.	Air:								
Particul	ates from Surface Solis	User Defined	None	None					
Volatiliz	ation from Solis	User Defined	None	None					
Volatiliz	ation from Groundwater	User Defined	None	None					
Indoor Al	r								
Volatiliz	ation from Solis	User Defined	NA	NA					
Volatiliz	ation from Groundwater	User Defined	None	None					
SOILLES	oning to circuit/water volabilization	oser Denned	None	None					
Recentor	Distance from Source Media	On-site	Off-olfo 1	Off-site 2		(Unite)			
Ground	water recentor	NA	NA	NA		(m)			
Outdoo	r air inhalation receptor	0	NA	NA		(m)			
Indoor a	air inhalation receptor	Ó	NA	NA		(m)			
Target He	iaith Risk Values	Individual	Cumulative	I					
TR	Target Risk (carcinogens)	1,0E-5	1,0E-5	1					
THQ	Target Hazard Guotient (non-carcinogenic risk)	1,0E+0	1,0E+0	1					
19039100	Onlines								
grinepote	opuone	7040							
Outdoo	ni usiatilaatina model	Curface & Curb	wetaan Madale	A CTM Model					
Outpoor an Volabilization model		Introson & Etti	nar model	- Aarm Model					
Sollies	ching model	ASTM leaching	model						
Lise onl	attenuation model (SAM) for leachate?	No							
Use du	al equilibrium desorption model?	No							
Apply N	tass Balance Limit for Soll Volatilization?	No							
Apply U	K (CLEA) SGV as soll concentration limit	No							
Vegetal	ble calculation options	NA							
Air dilut	ion factor	NA							
Ground	water diution-attenuation factor	NA							

THANK YOU FOR YOUR ATTENTION!!!

Silvia de la Rosa López sdelarosa@emgrisa.es